# Building Up from Nothing

Columbia Undergraduate Math Society

June 20, 2021

## Outline

### 1 Earlier

### 2 Sets

■ The Empty Set

 $\blacksquare$  Nonempty Sets

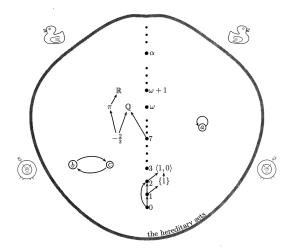
### 3 Relations

■ A Quick Detour: Functions

4 Well Orderings

## Where are we?





## Earlier

#### Theorem

There is at most one empty set.

### Proof.

See last time.

We still need to show that there is an empty set; after all not all sets  $\{x \mid Q(x)\}$  where Q is some general property exists. Famously,

### Theorem

Take  $R = \{x \mid x \notin x\}$ , so we have  $R \in R \iff R \notin R$ . In particular, this suggests that there cannot be a universal set:  $\forall z \exists y (y \notin z)$ .

### Proof.

Given some universal set z, consider  $R = \{x \in z \mid x \notin x\}$ , such that if  $R \in z$ , then  $R \in R \iff R \notin R$ , so  $R \notin z$ .  $\Rightarrow \leftarrow$ 

## The Empty Set

Axiom 3 (Comprehesion): For each formula  $\varphi$ , without y free,

$$\exists y \forall x (x \in y \iff x \in z \land \varphi(x))$$

Idea: for any set (z) and some property  $(\varphi)$ , there is some set (y) with only elements that satisfy this property.

But what is a formula? Vaguely, an expression made with  $\in, =, \land, \lor, \neg, \forall, \exists$ , variables, etc.

Theorem

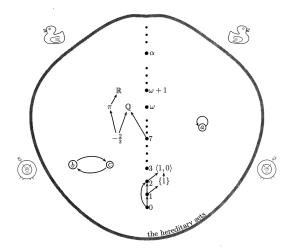
The empty set exists:  $\emptyset$  will denote the (unique) set y such that  $\forall x (x \notin y)$ .

### Proof.

Start with any set z (see Axiom 0: a set exists!) and apply Comprehension with  $x \neq x$ , so we get some statement like  $\exists y \forall x (x \in y \iff x \in z \land x \neq x)$ .

## Where are we?





## Nonempty Sets

Note that we can only make smaller sets with Comprehension:

Definition Given sets y, z, •  $y \cap z = \{x \in y \mid x \in z\}$ •  $y \setminus z = \{x \in y \mid x \notin z\}$ 

Naively, we still only have the empty set!

Axiom 4 (Pairing):

$$\forall x \forall y \exists z (x \in z \land y \in z)$$

Axiom 5 (Union):

$$\forall \mathcal{F} \exists A \forall Y \forall x \, (x \in Y \land Y \in \mathcal{F} \implies x \in A)$$

Idea: given a family of sets  $(\mathcal{F})$ , we can flatten it into a "single" set as the union of all its members.

## Unions and Intersections

### Definition

$$\bigcup \mathcal{F} = \bigcup_{Y \in \mathcal{F}} Y = \{ x \mid \exists Y \in \mathcal{F} (x \in Y) \}$$
$$\bigcap \mathcal{F} = \bigcap_{Y \in \mathcal{F}} Y = \{ x \mid \forall Y \in \mathcal{F} (x \in Y) \}$$

Note that intersection is already strictly defined from Comprehension. For union, we take A as in the Union axiom, and apply Comprehension with the formula above.

For intersection, we need that  $\mathcal{F} \neq \emptyset$ . Why?

## Ordinals?

### Example

Take  $x = y = \emptyset$ ; then we get by Pairing (and Comprehension) that  $\{\emptyset\}$  exists. Then, by Pairing,  $\{\emptyset, \{\emptyset\}\}$  also exists.

### Definition

The ordinal successor function is  $S(x) = x \cup \{x\}$ , so we can get

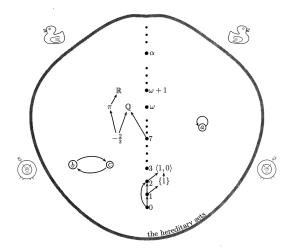
$$\begin{split} 1 &= S(0) = \{0\} \\ 2 &= S(1) = \{0,1\} \\ 3 &= S(2) = \{0,1,2\} \end{split}$$

etc.

So we can finally get beyond just the empty set! (More on ordinals later - likely next week).

## Where are we?





## Relations

### Definition

A binary relation is a set of ordered pairs; that is, R is a binary relation when

$$\forall u \in R \exists x, y(u = \langle x, y \rangle)$$

and we abbreviate  $\langle x, y \rangle \in R$  to xRy; similarly,  $\langle x, y \rangle \notin R$  becomes  $x \not R y$ .

- $\blacksquare R \text{ is transitive on } A \text{ if } \forall x, y, z \in A (xRy \land yRz \implies xRz).$
- R is reflexive on A if  $\forall x \in A(xRx)$ .
- R is irreflexive on A if  $\forall x \in A(x \not R x)$ .
- R satisfies trichotomy on A if  $\forall xy \in A(xRy \lor yRx \lor x = y)$ .
- R is symmetric on A if  $\forall xy \in A(xRy \iff yRx)$ .

## More Relations

- Strict partial orders are irreflexive, transitive relations.
- Strict total orders are irreflexive, transitive relations which satisfy trichonomy.
- Equivalence relations are reflexive, symmetric, and transitive relations.

### Examples

Consider  $\mathbb{Z}$ : then, < is a strict total order;  $\leq$  is not. For a partial order, consider  $\mathcal{P}(\{x, y\})$  equipped with  $\subset$ .

Note that being irreflexive and transitive is enough to show  $xRy \implies yRx$ .

# A Quick Detour: Functions

### Definition

For any set R, define

$$dom(R) = \{x \mid \exists y(\langle x, y \rangle \in R)\}$$
  
ran(R) =  $\{y \mid \exists x(\langle x, y \rangle \in R)\}$ 

Relations are not functions; functions are relations:

### Definition

A relation R is a function if for every  $x \in \text{dom}(R), \exists ! y$  such that  $\langle x, y \rangle \in R$ ; in particular, we put R(x) to denote that y.

## Domain and Range

As a reminder that this series is still about set theory: how do we justify the construction of domain and range?

#### Definition

For any set R, define

$$dom(R) = \{x \mid \exists y(\langle x, y \rangle \in R)\} ran(R) = \{y \mid \exists x(\langle x, y \rangle \in R)\}$$

Remember that  $\langle x, y \rangle = \{\{x\}, \{x, y\}\}$ ; then we have that  $\{x\}, \{x, y\} \in \bigcup R$ , and as a result  $x, y \in \bigcup \bigcup R$ ; Comprehension immediately gives the definition of domain (and range):

$$\operatorname{dom}(R) = \{ x \in \bigcup \bigcup R \mid \exists y(\langle x, y \rangle \in R) \}$$

## More Sets!

A lot of times one might see a function  $S \to T$  as a subset of  $S \times T$ ; ab initio, we don't even know  $S \times T$  exists!

• Axiom 6 (Replacement): For each formula  $\varphi$ , without B free,

$$\forall x \in A \exists ! y \varphi(x, y) \to \exists B \forall x \in A \exists y \in B \varphi(x, y)$$

Idea: given a set (A) and some other class of sets (y) associated to elements of the first set (x), the latter can be formed into a set (B).

This lets us create sets in the form  $S = \{y \in B \mid \exists x \in A\varphi(x, y)\}.$ 

### Example

$$S \times T = \{x \mid \exists s \in S \exists t \in T(x = \langle s, t \rangle)\}$$

## Isomorphisms

### Theorem

Suppose  $\forall x \in A \exists ! y \varphi(x, y)$ . Then there is a function f with domain A taking x to that associated y.

### Proof.

Replacement axiom.

### Definition

F is an isomorphism from (A;<) to  $(B;\triangleleft)$  if F is a bijection  $A\to B$  and

$$\forall x, y \in A(x < y \iff F(x) \triangleleft F(y))$$

This codifies formally when two (ordered) sets are structurally the same, even if the sets they are composed of aren't equal as sets.

# Well Orderings

#### Definition

Let R be a relation.  $y \in X$  is R-minimal in X if

$$\neg \exists z (z \in X \land zRy)$$

and R-maximal in X if

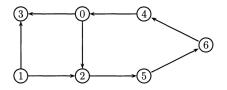
$$\neg \exists z (z \in X \land yRz).$$

Further, R is well-founded on A if for all non-empty  $X \subset A$ , there is some  $y \in X$  which is R-minimal on X.

#### Example

0 is <-minimal in  $\mathbb N,$  and < is well founded. (Remember that  $\mathbb N$  doesn't really exist yet!)

## A Better Example



For example, 0R2 in this diagram.

What are the *R*-minimal elements on  $7 = \{0, 1, 2, 3, 4, 5, 6\}$ ? *R*-maximal? Is *R* well-founded on 7? (Think about what a cycle in this graph means!)

# Well Orderings

### Definition

R well-orders A if R is a strict total order on A and is also well-founded on A.

In particular, this suggests that any subset of A can only have a singular least element (via trichotomy). This leads us to the equivalent formulation that a well-order is a strict total order where every (non-empty) subset has a least element.

## Ordinals

### Definition

z is a transitive set if  $\forall y \in z(y \subseteq z)$ ; equivalently,

$$\forall x, y (x \in y \land y \in z \implies x \in z)$$

### Definition

z is a (von Neumann) ordinal if z is a transitive set and z is well-ordered by  $\in.$ 

Remember: the ordinal successor function is  $S(x) = x \cup \{x\}$ , so

$$1 = S(0) = \{0\}$$
  

$$2 = S(1) = \{0, 1\}$$
  

$$3 = S(2) = \{0, 1, 2\}$$

.

## Where are we?



