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Where are we?



Earlier

Theorem
There is at most one empty set.

Proof.
See last time.

We still need to show that there is an empty set; after all not all sets
{x | Q(x)} where Q is some general property exists. Famously,

Theorem
Take R = {x | x /∈ x}, so we have R ∈ R ⇐⇒ R /∈ R. In particular,
this suggests that there cannot be a universal set: ∀z∃y(y /∈ z).

Proof.
Given some universal set z, consider R = {x ∈ z | x /∈ x}, such that if
R ∈ z, then R ∈ R ⇐⇒ R /∈ R, so R /∈ z. ⇒⇐



The Empty Set

Axiom 3 (Comprehesion): For each formula ϕ, without y free,

∃y∀x(x ∈ y ⇐⇒ x ∈ z ∧ ϕ(x))

Idea: for any set (z) and some property (ϕ), there is some set (y)
with only elements that satisfy this property.

But what is a formula? Vaguely, an expression made with
∈,=,∧,∨,¬,∀,∃, variables, etc.

Theorem
The empty set exists: ∅ will denote the (unique) set y such that
∀x(x /∈ y).

Proof.
Start with any set z (see Axiom 0: a set exists!) and apply
Comprehension with x 6= x, so we get some statement like
∃y∀x(x ∈ y ⇐⇒ x ∈ z ∧ x 6= x).



Where are we?



Nonempty Sets

Note that we can only make smaller sets with Comprehension:

Definition
Given sets y, z,

y ∩ z = {x ∈ y | x ∈ z}
y \ z = {x ∈ y | x /∈ z}

Naively, we still only have the empty set!
Axiom 4 (Pairing):

∀x∀y∃z(x ∈ z ∧ y ∈ z)

Axiom 5 (Union):

∀F∃A∀Y ∀x (x ∈ Y ∧ Y ∈ F =⇒ x ∈ A)

Idea: given a family of sets (F), we can flatten it into a “single”
set as the union of all its members.



Unions and Intersections

Definition

⋃
F =

⋃
Y ∈F

Y = {x | ∃Y ∈ F(x ∈ Y )}⋂
F =

⋂
Y ∈F

Y = {x | ∀Y ∈ F(x ∈ Y )}

Note that intersection is already strictly defined from Comprehension.

For union, we take A as in the Union axiom, and apply
Comprehension with the formula above.

For intersection, we need that F 6= ∅. Why?



Ordinals?

Example

Take x = y = ∅; then we get by Pairing (and Comprehension) that
{∅} exists. Then, by Pairing, {∅, {∅}} also exists.

Definition
The ordinal successor function is S(x) = x ∪ {x}, so we can get

1 = S(0) = {0}
2 = S(1) = {0, 1}
3 = S(2) = {0, 1, 2}

etc.

So we can finally get beyond just the empty set! (More on ordinals
later - likely next week).



Where are we?



Relations

Definition
A binary relation is a set of ordered pairs; that is, R is a binary
relation when

∀u ∈ R∃x, y(u = 〈x, y〉)

and we abbreviate 〈x, y〉 ∈ R to xRy; similarly, 〈x, y〉 6∈ R becomes
x�Ry.

R is transitive on A if ∀x, y, z ∈ A (xRy ∧ yRz =⇒ xRz).
R is reflexive on A if ∀x ∈ A(xRx).
R is irreflexive on A if ∀x ∈ A(x�Rx).
R satisfies trichotomy on A if ∀xy ∈ A(xRy ∨ yRx ∨ x = y).
R is symmetric on A if ∀xy ∈ A(xRy ⇐⇒ yRx).



More Relations

Strict partial orders are irreflexive, transitive relations.
Strict total orders are irreflexive, transitive relations which satisfy
trichonomy.
Equivalence relations are reflexive, symmetric, and transitive
relations.

Examples

Consider Z: then, < is a strict total order; ≤ is not. For a partial
order, consider P({x, y}) equipped with ⊂.

Note that being irreflexive and transitive is enough to show
xRy =⇒ y�Rx.



A Quick Detour: Functions

Definition
For any set R, define

dom(R) = {x | ∃y(〈x, y〉 ∈ R)}
ran(R) = {y | ∃x(〈x, y〉 ∈ R)}

Relations are not functions; functions are relations:

Definition
A relation R is a function if for every x ∈ dom(R),∃!y such that
〈x, y〉 ∈ R; in particular, we put R(x) to denote that y.



Domain and Range

As a reminder that this series is still about set theory: how do we
justify the construction of domain and range?

Definition
For any set R, define

dom(R) = {x | ∃y(〈x, y〉 ∈ R)}
ran(R) = {y | ∃x(〈x, y〉 ∈ R)}

Remember that 〈x, y〉 = {{x}, {x, y}}; then we have that
{x}, {x, y} ∈

⋃
R, and as a result x, y ∈

⋃⋃
R; Comprehension

immediately gives the definition of domain (and range):

dom(R) = {x ∈
⋃⋃

R | ∃y(〈x, y〉 ∈ R)}



More Sets!

A lot of times one might see a function S → T as a subset of S × T ;
ab initio, we don’t even know S × T exists!

Axiom 6 (Replacement): For each formula ϕ, without B free,

∀x ∈ A∃!yϕ(x, y)→ ∃B∀x ∈ A∃y ∈ Bϕ(x, y)

Idea: given a set (A) and some other class of sets (y) associated
to elements of the first set (x), the latter can be formed into a set
(B).

This lets us create sets in the form S = {y ∈ B | ∃x ∈ Aϕ(x, y)}.

Example

S × T = {x | ∃s ∈ S∃t ∈ T (x = 〈s, t〉)}



Isomorphisms

Theorem
Suppose ∀x ∈ A∃!yϕ(x, y). Then there is a function f with domain A
taking x to that associated y.

Proof.
Replacement axiom.

Definition
F is an isomorphism from (A;<) to (B; /) if F is a bijection A→ B
and

∀x, y ∈ A(x < y ⇐⇒ F (x) / F (y))

This codifies formally when two (ordered) sets are structurally the
same, even if the sets they are composed of aren’t equal as sets.



Well Orderings

Definition
Let R be a relation. y ∈ X is R-minimal in X if

¬∃z(z ∈ X ∧ zRy)

and R-maximal in X if

¬∃z(z ∈ X ∧ yRz).

Further, R is well-founded on A if for all non-empty X ⊂ A, there is
some y ∈ X which is R-minimal on X.

Example

0 is <-minimal in N, and < is well founded. (Remember that N
doesn’t really exist yet!)



A Better Example

For example, 0R2 in this diagram.

What are the R-minimal elements on 7 = {0, 1, 2, 3, 4, 5, 6}?
R-maximal? Is R well-founded on 7? (Think about what a cycle in
this graph means!)



Well Orderings

Definition
R well-orders A if R is a strict total order on A and is also
well-founded on A.

In particular, this suggests that any subset of A can only have a
singular least element (via trichotomy). This leads us to the
equivalent formulation that a well-order is a strict total order where
every (non-empty) subset has a least element.



Ordinals

Definition
z is a transitive set if ∀y ∈ z(y ⊆ z); equivalently,

∀x, y(x ∈ y ∧ y ∈ z =⇒ x ∈ z)

Definition
z is a (von Neumann) ordinal if z is a transitive set and z is
well-ordered by ∈.

Remember: the ordinal successor function is S(x) = x ∪ {x}, so

1 = S(0) = {0}
2 = S(1) = {0, 1}
3 = S(2) = {0, 1, 2}

...



Where are we?
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